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46 R.H. T.BATES AND D. J.N. WALL

Invoking the optical extinction theorem (extended boundary condition) the conven-
tional singular integral equation (for the density of reradiating sources existing in the
surface of a totally reflecting body scattering monochromatic waves) is transformed
intoinfinite sets of non-singular integral equations, called the null field equations. There
is a set corresponding to each separable coordinate system (we say that we are using the
‘elliptic’, ‘spheroidal’, etc., null field method when we employ ‘elliptic cylindrical’,
‘spheroidal’, etc., coordinates). Each set can be used to compute the scattering from
bodies of arbitrary shape, but each set is most appropriate for particular types of body
shape, as our computational results confirm. We assert that when the improvements
(reported here) are incorporated into it, Waterman’s adaptation of the extinction
theorem becomes a globally efficient computational approach. Shafai’s use of conformal
transformation for automatically accomodating singularities of the surface source
density is incorporated into the cylindrical null field methods. Our approach permits us
to use multipole expansions in a computationally convenient manner, for arbitrary
numbers of separated, interacting bodies of arbitrary shape. We present examples of
computed surface source densities induced on pairs of elliptical and square cylinders.

1. GENERAL INTRODUCTION
(a) Preamble to the whole series of papers

This is the first of a series of three papers treating, from a computational viewpoint, the diffraction
of scalar waves by totally reflecting bodies. We use the ‘null field method’ which is our develop-
ment of a technique based on what has been variously called the ‘field equivalence principle’,
the ‘optical extinction theorem’ and the ‘extended boundary condition’. We cover both direct
and inverse scattering, illustrating our theoretical results with computational examples.

The direct scattering problem involves calculating the scattered field, given the field incident
upon a body of known constitution and location. Solutions to this problem are straightforward
in principle: they can be formulated without difficulty and programmed for a digital computer.
However, as emphasized in two recent reviews ( Jones 1974 b; Bates 1975 ), there is no shortage of
computational pitfalls. We assert that, of the many available techniques, the null field method is
perhaps the most promising because of two of its properties. First, the solutions are necessarily
unique; the complementary problem (that of the cavity resonances internal to the scattering
body) is automatically decoupled from the problem ofinterest (the exterior scattering problem)
other methods have to be specially adapted to ensure this. The second property stems from the
regularity of the kernels of the null field integral equations (the conventional integral equations
have singular kernels); it is usually easy to expand the wave functions in terms of any desired
basis functions, so that the latter can be chosen for computational, rather than analytical,
convenience.

The calculation of multiple scattering by closely spaced bodies tends to be demanding of
computer storage and time, which may account for the several iterative techniques which have
been suggested. We show here that the null field method leads to efficient, direct computation
of the simultaneous scattering from several cylinders of arbitrary cross-section.

Numerical algorithms based on exact solutions to direct scattering problems become computa-
tionally expensive if the dimensions of the scattering bodies are large compared with the wave-
length, when it becomes appropriate to use approximate techniques such as the ‘geometrical
theory of diffraction’ and ‘physical optics’. Electrical engineers use the term ‘physical optics’
to describe the approximate techniques based on Kirchhoff’s approach to diffraction: the
reradiating sources induced at each point on the surface of a body are assumed to be identical to
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NULL FIELD APPROACH TO SCALAR DIFFRACTION. I 47

those which would be induced, at the same point, on an infinite totally reflecting plane tangent
to the point. We use the term ‘planar physical optics’ to describe this conventional Kirchhoff
approach, because it is exact when the body is infinite and flat. In the second paper of this series
we develop ‘circular physical optics’, ‘elliptical physical optics’, ‘spherical physical optics’, etc.,
which become exact when the body is a circular cylinder, elliptic cylinder, sphere, etc.

The inverse scattering problem involves calculating the shape of the body, given the incident
field and the scattered field (most often it is the far scattered field that is given, i.e. the asymptotic,
or Fraunhofer, form of the field). This is much more demanding computationally than the direct
scattering problem, as is evinced by certain analytic continuation techniques which seem to be
the only known, exact (in principle), general means of treating inverse scattering in two or three
space dimensions. Approximate, computationally efficient methods based on asymptotic tech-
niques, such as geometrical optics and planar physical optics, have been used with some success
for certain simple scattering bodies. In the third paper of this series we develop from our exten-
sions to physical optics a new approximate approach to inverse scattering which is of wider
applicability than previous asymptotic approaches and is as convenient computationally.

(b) Introduction to the present paper

Up to the present, in the null field methods that are based on Waterman’s (1965) formulation,
the extended boundary condition is satisfied explicitly within the circle (for two-dimensional
problems) or the sphere (for three-dimensional problems) inscribing the scattering body.
Although such ‘circular’ and ‘spherical’ null field methods are theoretically sound, they tend
to be unstable numerically when the body has a large aspect ratio. In this paper we generalize
Waterman’s formulation to satisfy the extended boundary condition explicitly within the ellipse
(for two-dimensional problems) or the spheroid (for three-dimensional problems) inscribing the
body, in order to ensure numerical convergence in situations where the circular and spherical
null field methods lead to computational instabilities.

Ever since digital computers have been in general use, engineers and applied physicists have
developed a multitude of heuristic methods for solving integral equations numerically. There has
been a notable lack of critical, rigorous mathematical examinations of the methods, mainly
because the pertinent mathematical results have not been easily accessible to non-mathematicians.
But it seems that Zabreyko et al. (1975) have largely made good this deficiency in the literature;
they have gathered together many diverse results and have covered points not properly con-
sidered before. The background to modern approaches to integral equations is covered rigorously,
but most readably, by Pogorzelski (1966); concise treatments are given by Smithies (1958) and
Green (1969). In this paper we place much reliance on Zabreyko et al. (1975), whose treatment is
by far the most comprehensive we have yet seen.

Rayleigh (1892) is perhaps the first to have studied scattering from multiple bodies. He
considered rectangular arrays of circular cylinders and spheres. Comprehensive surveys of the
work which has followed are given by Twersky (1960), Burke & Twersky (1964) and Hessel &
Oliner (1965).

Methods, which are in principle exact, are none too practicable for solving diffraction problems
for bodies whose dimensions are large compared with the wavelength: the associated digital
computations tend to be difficult to organize and are enormously expensive. Similarly, exact
methods for solving multiple scattering problems are impracticable when the separations of the
bodies are large, in which cases it has been shown that approximate methods can often provide

6-2
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48 R.H. T.BATES AND D.J.N. WALL

solutions of useful accuracy (Karp & Zitron 19614, b; Twersky 19624, b). When the bodies and
separations are both small, low frequency approximations apply (Twersky 19624, b, 1967). Exact
solutions are most needed when the linear dimensions of the bodies and their spacings are of the
order of the wavelength; this is fortunate because it means that useful digital computations can
often be done efficiently.

P(unuzﬂuli)

Ficure 1. Cross-section of a three-dimensional scattering body showing a Cartesian coordinate system and a general
orthogonal curvilinear coordinate system. In the Cartesian coordinate system the z-axis is perpendicular to,
and directed out of the page.

In ascattering problem it is usually convenient to take the origin of coordinates inside the body.
This implies that it is likely to be convenient to shift the origin during the solution of a multiple
scattering problem. Such shifts can be accomplished with the aid of addition theorems, which
exist for all wave functions which are solutions of the Helmholtz equation in separable coordinate
systems (Morse & Feshbach 1953, Chs 10-13). The addition theorems have been applied to
multiple bodies, on the surface of each of which one coordinate of a separable coordinate system
(having its origin inside the body) has a constant value, i.e. each body is a spheroid, sphere,
elliptic cylinder or circular cylinder. Direct solutions (cf. Row 1955; Liang & Lo 1967) of the
equations so obtained have tended to require excessive computer time, so that iterative methods
have been developed (Cheng 1969; Olaofe 1970), but these are often found to converge slowly
(Cheng 1969). Howarth & Pavlasek (1973), Howarth (1973), Howarth, Pavalasek & Silvester
(1974) and Ahluwalia & Boerner (1974) have recently developed numerically efficient techniques
which are suitable for spherical and circularly cylindrical bodies. Peterson & Strom (1974) have
extended Waterman’s (19695, 1971) approach to multiple scattering bodies whose shapes, while
they cannot be arbitrary, need not be spherical or circularly cylindrical.

We employ addition theorems here, and our methods of solution are direct. Our improvement
is that we can deal with multiple scattering bodies of arbitrary shape in a numerically efficient
manner.

In § 2 necessary preliminaries are introduced. The optical extinction theorem is stated in § 3.
Section 4 is devoted to the development of the general null field method, applicable to all
separable coordinate systems. We emphasize that the shapes of the scattering bodies can be
arbitrary. Particular null field methods are discussed in § 5. The concernin § 6 iswithwhathastobe
done to ensure computational efficiency. The null field treatment of multiple scattering bodies is
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NULL FIELD APPROACH TO SCALAR DIFFRACTION. I 49

developed in § 7. In § 8 are presented computational results for the scattering of plane waves by
cylindrical bodies having a variety of cross-sectional shapes. We assess in § 9 the significance of
our results and suggest how they might be extended.

2. PRELIMINARIES

As indicated in figure 1, three-dimensional space (denoted by ') is partitioned according to
Y~7_uvsSu?r, (2.1)

where ¥_ and ¥, respectively, are the regions inside and outside the closed surface S of a totally
reflecting body. Arbitrary points in 7" and on § are denoted by P and P’ respectively. With
respect to the point O, which lies in 7"_, the position vectors of P and P’ are r and ' respectively.
The unit vector fi’ is the outward normal to § at P’. Cartesian coordinates (x,y, z) and ortho-
gonal curvilinear coordinates (uy, #y, 5) are set up with O as origin; #, is a radial type of coordinate,
u,is an angular type of coordinate, u is either the same as z (for cylindrical coordinate systems) or
is an angular type of coordinate (for non-cylindrical coordinate systems). The surface X_and X',
on which #, is constant, inscribe and circumscribe S in the sense that they are tangent to it but do
not cut it. We define ¥y ~ region inside X_; (2.2)
Y., ~ region outside X,. (2.3)

Monochromatic (angular frequency w, wavelength A, wave number £ = 2rn/A) impressed
sources exist within the region ¥, = 7, ,. These sources radiate an incident field ,, which
impinges on the body inducing equivalent sources in S. The reradiations from these sources
induce further sources, and so on until an equilibrium is reached. The totality of these sources
gives rise to the scattered field . All sources and fields are taken to be complex functions of space,
with the time factor exp (iw¢) suppressed. There is no need to make a formal distinction between
scattering and antenna problems, but it is worth remembering that ¥ is usually far from 7"_ for
the former and is always near to ¥_ for the latter.

We consider those fields whose propagation is governed by the Helmholtz equation:

Vi + k2 = —f, (2.4)

where fis the total surface density at P of the reradiating sources induced in S. The form of (2.4)
implies that our results apply to all scalar fields which behave like acoustic fields of small
amplitude.

In general, f varies from point to point on S, implying that f depends upon the parametric
coordinates 7, and 7, introduced in table 1. We see then, on invoking a standard formulation of
the diffraction of a scalar field by a material body (cf. Morse & Ingard 1968, §7.1; Jones 1964,
§ 1.26), that the scattered field at P can be written as

v=a{[ [fea)s r=rmm, (2.5)

where 4 is the appropriate operator and g is the scalar free-space Green function:
¢ = g(kR) = {exp (—ikR)}4nR, (2.6)
where R is the distance from P’ to P: R=|r-r|. (2.7)
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50 R.H. T.BATES AND D. J.N. WALL
Totally reflecting bodies are either sound-soft or sound-hard. The forms of /4 and fin these two
cases are A=—1, f=1limd(y,+¥)/en sound-soft, (2.8)
PP’
A =-0[on, f=lim(Y,+y) sound-hard, (2.9)
PP’

where the n-direction is in the same sense as the n’-direction, but the operator 0/0n is applied to
fields at P, whereas the operator 0/0z’ is applied to fields at P’.

Like many who have gone before us we often find it useful and instructive to treat cylindrical
scattering bodies, of infinite length but of arbitrary cross section. When 9f/0z = 0 all sources and
fields are independent of z; and the explicit dimension of all quantities of interest decreases by
one, when compared with the general case. It is sufficient to examine ¢ within Q, which is the
infinite plane z = 0, and on C, which is the closed curve formed when Q cuts S. In table 1 we
compare quantities appropriate for scattering bodies of arbitrary shape and cylindrical scattering
bodies; the table serves to define quantities not previously discussed in the text. We indicate the
explicit functional dependence of fields and sources: note that we use C to denote both the curve
and distance along it, measured anticlockwise from the outermost intersection of C' with the

¥-axis.
TABLE 1. QUANTITIES APPROPRIATE FOR ARBITRARY SCATTERING
BODIES AND CYLINDRICAL SCATTERING BODIES
(Note that not all circumflex accents introduced in this paper denote unit vectors,
but only those which surmount symbols set in bold type.)
arbitrary bodics cylindrical bodies

regions of space Y, V0, Y, Vo ¥, Vi 02,020,92,,2,.,,2_,2.u
boundaries S C~Sne

z,x, r,r,
coordinates Uy, g, U Uyy Ugy 2

T,, Ty which are orthogonal parametric C

coordinates lying in §

unit vectors any vector symbol (bold type) surmounted by a circumflex accent e.g. #1, &
fields ¥ = Yr(uy, Uy, us) Y= Y (u, )
source densities S=f(1,7,) F=F()
Green functions {exp (—ikR)}/4nR (—i/4) H® (kR)

‘Hankel function of second kind
of zero order’

There is an equivalent multipole expansion for gin each of the separable coordinate systems
(cf. Morse & Feshbach 1953, Chs 7 and 11):

l A A
i 2 ("j,lhg',l)(ula k)]j,l(“i) k) ?j,l(uz’ Us, k) Yj,l(ué’ u:;’ k) (ul > ui)) (2' 10)

j=-1

g:

Ins

l

where the ¢; ; are normalizing constants and ﬁng -) and j;,(-) are those independent solutions,
to the radial part of the scalar Helmholtz equation, corresponding respectively to waves which
are outgoing at infinity and waves which are regular at the origin of coordinates. The radial
solutions in the spherical coordinate system are independent of the subscript j (refer to §5). The
solutions ¥, ;1(+) are regular solutions of the part of the Helmholtz equation which remains after
the radial part has been separated out. When #; > u;, the argument of /2;23 becomes uj, k£ and the
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NULL FIELD APPROACH TO SCALAR DIFFRACTION. 1 51
argument of f; ; becomes u;, £. The way in which we have defined ¥, and ¥, ensures that the
latter can be written as o 1

l/f 120)_2_ cj lay lJ] l(ub k) Yj,l (u2> us, k): (2'11)

where the a; ; are appropriate expansion coefficients.
We denote a finite set of integers by

> L} ~{I, I+ 1, L,+2,...,1,— 1,1}, (2.12)
where I, and I, are integers, with , > ;. We define {/, - 1} to be the null set unless 1, = 1,.

(a) Particular notation for cylindrical bodies

When the scattering body is cylindrical and the fields exhibit no variation in the z-direction,
only one angular coordinate enters into the functional dependence of the wave functions. So,
the two integer-indices j and / can be replaced by a single one, m say. The wave functions are
either even (denoted by the superscript e) or odd (denoted by the superscript o) about any
suitable datum, which we choose to be the x-axis. Consequently, instead of Y 1(uy, uz, k) we have
either ¥, (uy, k) or ¥, (uy, k). To accord more closely with conventional notatlon for wave functions
appropriate to cylindrical coordinate systems, we replace j it and A® by J and A®. When
cylindrical polar coordinates are employed, J (41, k) and AP (u;, k) become the ordinary Bessel
and Hankel functions J,, (kp) and H{? (kp) respectively. This is discussed in more detail in § 5 (),
but we point out here that there are distinct even and odd forms of the jm and A for general
cylindrical coordinate systems. The equations corresponding to (2.10) and (2.11) are

g= 3 (oo AD(uy, k) To, (1, k) P, k) P31 K)
m=0
+o:;,ﬁ£5>°<ul, k) T o (uys k) 70, (ug, k) X0 (up, B)] (g > u1); (2.13)

Wo = [“mdm‘]e (ul’ k) Y?n (u2a k) + c?n ag@j?n(ula k) Y?n(“za k)]’ (2‘ 14)

m=0
where the ¢, are normalizing constants and the a, are appropriate expansion coefficients.
Throughout this paper we omit the superscripts e and o whenever it causes no ambiguity.

3. THE EXTINCTION THEOREM

Given i, then either (2.8) or (2.9) can be combined with (2.5) to give a Fredholm integral
equation for ¥ on S. The Green function g is the kernel of the integral equation. Note that (2.10)
is an expansion of g in a bilinear series of two sets of functions, the members of each set being
orthogonal and square-integrable in three-dimensional space. However, the form of the expan-
sion, at any point on S, depends upon the relative magnitudes of #;, and u;. So, g cannot be
expressed as a single bilinear series everywhere on S. Consequently, even though g has all the
properties of a Fredholm kernel (cf. Zabreyko et al. 1975, Ch. I, §1.1), the integral equation
suffers from the well-known (cf. Jones 19744, b) lack of uniqueness of its solution. For particular
values of £ (the so-called eigenvalues of the integral equation) the solution is contaminated by
what correspond to resonances inside S.

The extinction theorem, which we now discuss, is based on the field inside § being explicitly
zero. There cannot be any resonances, which means that the solutions to the integral equation
are necessarily unique for all £.
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52 R.H. T.BATES AND D.J.N. WALL

When a body is totally reflecting, the incident and scattered fields are confined to ¥’,. Once fis
known, ¢ can be calculated from it using (2.5). This means that the actual material body need
not be taken into account explicitly; it can be replaced by a ‘disembodied’ distribution of
surface sources, identical in position and in complex amplitude with the actual surface sources.
We can then think of ¥, as passing undisturbed throughout 7" and we can consider f to radiate
into 7_as well asinto 1", so that (2.5) can be taken to apply throughout 7. The optical extinction
theorem states that Y =—1,, Pe¥.. (3.1)

It is physically obvious that a field cannot penetrate a totally reflecting body. But even when
a body is partially opaque it is possible to define fsuch that the right-hand side (r.h.s.) of (2.5)
‘extinguishes’ ¢, in ¥_, as seems to have been noticed first by Love (19o1). Hénl, Maue &
Westpfahl (1961) discuss the electromagnetic form of this principle. In the optical literature (cf.
Born & Wolf1g70, § 2.4.2) the theorem is prefixed with the names Ewald (1916) and Oseen (1915).
On substituting (2.5) into (3.1) we obtain

= A{fsffgds} (Pet.), (3.2)

which we call the ‘extended integral equation’ for f, because Waterman (1965, 19694, b, 1971,
1975) refers to the extinction theorem as the ‘extended boundary condition’. Waterman can be
excused for introducing new terminology because of the power of his approach. He expands g as
in (2.10), using wave functions appropriate to spherical polar coordinates. This allows him to
obtain from (3.2) an infinite set of non-singular integral equations which satisfy the extinction
theorem explicitly within the inscribing sphere centred on the origin of coordinates. Avetisyan
(1970), Hizal & Marincic (1970) and Bates & Wong (1974) have developed computational
aspects of Waterman’s approach, which has been extended in several significant particulars by
Peterson & Strom (1974). However, the latter authors assume implicitly, as Waterman does, that
the Rayleigh hypotheses (cf. Bates 1975 4) are valid, and so their methods are less widely applicable
(for totally reflecting bodies) than are those presented in this paper.

The two-dimensional analogue of Waterman’s approach has been developed both for scattering
problems (Bates 1968; Hunter 1972, 1974; Bolomey & Tabbara 1973; Bolomey & Wirgin 1974;
Wirgin 1975) and for the computation of waveguide characteristics (Bates 1969; Ng & Bates 1972;
Bates & Ng 1972, 1973).

Various methods have been developed in which the extinction theorem is satisfied either on
surfaces, or at sets of points, arbitrarily chosen within 2_ (Albert & Synge 1948; Synge 1948;
Gavorun 1959, 1961; Vasil’ev 1959; Vasil’ev & Seregina 1963; Vasilev, Malushkov &
Falunin 1967; Copley 1967; Schenck 1968; Fenlon 1969; Abeyaskere 1972; Taylor & Wilton 1972;
Al-Badwaihy & Yen 1974). While these methods are useful for specific problems they do not have
the generality of Waterman’s approach, which satisfies the extinction theorem implicitly
throughout ¥_ (this is discussed further in § 4). Al-Badwaihy & Yen (1975) have recently discussed
the uniqueness of Waterman’s approach and the aforementioned methods.

The null field method appears to provide added justification for the aperture-field method, an
approximate design procedure useful in radio engineering (cf. Silver 1965, §5.11), and for
physical optics (Bates 1975a). It is amusing to note that the latter reference is among the first to
remark that studies by acousticians and electrical engineers have run close on occasion to those
of optical scientists, who have recently re-examined the extinction theorem in detail (Sein 1970,
1975; De Goede & Mazur 1972; Pattanayak & Wolf 1972).
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4, THE GENERAL NULL FIELD METHOD

We show here how to extend Waterman’s approach by expanding g in wave functions appro-
priate to any separable coordinate system.

Consider the form of (3.2) for sound-soft bodies; (2.8) shows that 4 = — 1. By definition, as
laid down in (2.11), ¥, possesses an everywhere convergent expansion in terms of orthogonal
functions, each of which is square-integrable. Now, r.h.s. (2.10) has a single form for Pe ¥,
because #, < u; there. Consequently, ¢ has a bilinear decomposition equivalent to (3.23) of
Zabreyko et al. (1975). It follows from Zabreyko ¢t al. (1975, Ch. III, §6.2), given ¥y, £ and S,
that there is a unique measurable f which is the solution to our (3.2).

When (2.9) is substituted into (3.2), the kernel becomes dg/on which, like g, is non-symmetric
and possesses a single bilinear decomposition, valid VP e 1,,,;;, equivalent to (3.23) of Zabreyko
et al. (1975).

We note that r.h.s. (2.5) and r.h.s. (3.2) are analytic throughout 7"_, so that if fis chosen so
that (3.2) is satisfied explicitly for all P within a finite part of 7_ then, by elementary analytic
continuation arguments (Waterman 1965; Bates 1968), (3.2) is necessarily satisfied implicitly for
all P within 7_. In the spirit of Waterman, we manipulate (3.2) so as to satisfy it explicitly for all
P within 7} ;;, which is necessarily finite if the body has a finite interior. Consequently, we
necessarily satisfy (3.2) implicitly for all P within ¥_. Our method therefore has greater generality
than alternative techniques (listed in § 3) in which the extinction theorem is satisfied explicitly
only at points or on lines or on surfaces within ¥_.

In an actual computation, (3.2) can only be satisfied approximately, even at points within
Ypun- Inorder that | + 9| shall not exceed a required threshold, anywhere within ¥_, we must
compute f to a particular tolerance, which must be made smaller the larger ¥_ is in comparison
with ¥,,;;- As Lewin (1970) forecast, numerical instabilities have tended to occur because of this,
when Waterman’s approach has been used to compute the scattering from bodies of large aspect
ratio, and g has been expanded in wave functions appropriate to cylindrical or spherical polar
coordinates (Bolomey & Tabbara 1973; Bolomey & Wirgin 1974; Bates & Wong 1974). We began
the work reported in this paper when we realized that, by using elliptic cylinder coordinates or
spheroidal coordinates, we could reduce the tendency towards numerical instability by decreasing
the size of the part of 7_ not included in ¥ ;.

(a) Sound-soft body

On referring to the definition (2.2) of ¥ ,;;, we see that (2.8), (2.13) and (2.14) permit (3.2) to
be rewritten, since u; > #, in ¥}y, as

A

© l
I IJg (uy, k) ¥ jl (ugyus, k f fﬂézz’ (ug, & Yg Uy, Uz, k) ds

1=0j=—1

l
DIERURRCHOR /A CANI S PRI CRY

j=—

Ins

l

which is in the form that we have shown above to be equivalent to the integral equations treated
in Zabreyko et al. (1975, Ch. III, §6.2). So, we know there is a unique, measurable, square-
integrable f that solves (4.1). The properties of the ¥ ,(+) are such (cf. Morse & Feshbach 1953,
Chs 7 and 11) that they form an orthogonal set on any closed surface #; = constant. Since any

7 Vol. 287. A.
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54 R.H. T.BATES AND D.J.N. WALL

surface u, = constant is closed with 7}, by definition, it follows that the individual terms in
(4.1) are independent, so that

f ffh(” (uy k) T, (b, ug k) ds = 4y (1€{0 > o0}, je{—1 1)), (4.2)

which are what we call the null field equations for a sound-soft body, for the particular separable
coordinate system (u, u,, 43). The integrands are regular at all points on S because /t(z)( ) is only
singular on the surface u; = 0, which by definition cannot intersect S.

(b) Sound-hard body
It follows from (2.9) and (3.2) that

Vo = %(L [fgds), Per, (4.3)

which can be rewritten, on account of the antisymmetry of g with respect to r and 7/, as

Vo= — fs f F(ogfon’) ds (4.4)

where we have noted the definition of 0/0n’, relative to 0/0n, given in §2. Restricting P to lie
within ¥}y, expressing g and ¥, in their multipole expansions (2.10) and (2.11) and again noting
the orthogonality of the Y; () within 7, ,,, we see that (4.4) leads to

f ffa KB (ui, k) T, (upy uiy k) Jon' ds = —a;; (1€{0 > o0}, je{—1 1)), (4.5)

which are the null field equations for a sound-hard body, for the particular separable coordinate
system (uy, U, 4g).
(¢) Fieldsin 1
For Pe Y, we haveu, > uj. It follows from substituting (2.10) into (2.5), and using (2.5) and
(2.9), that

© l A ~
31’ = 120 . 2 lcj,lbj,lh;'?l)(ub k) Y (uza Ug, k): Pe T++> (4‘6)
= }= —_
where by = — f f FKhds, Kb = K (uh, uly s £), (4.7)
s
where, for sound-soft bodies,
. Ky = Jyalui, k) (5, 3, ) (4.8)
and, for sound-hard bodies, R
Kify = —0(f;(ug, k) X 1 (ug, ug, ) fon”. (4.9)

(d) Far fields

Once f has been determined, by solution of the null field equations, the far scattered field can
be conveniently computed from (2.5), with g assuming its asymptotic form: i.e. R is taken as the
mean value of r.h.s. (2.7) in the denominator of r.h.s. (2.6), but R is approximated by

R=|r|—1"1/|r| (4.10)
in the exponent in r.h.s. (2.6). The partial wave expansion of the far scattered field is obtained by

expressing the A®)(+) in (4.6) in their asymptotic forms (cf. Morse & Feshbach 1953, Chs 5,
10-12).
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5. PARTICULAR NULL FIELD METHODS

The coordinates «,, u, and #; must belong to one of those sets for which the scalar Helmholtz
(wave) equation separates (cf. Morse & Feshbach 1953, pp. 655-664). We say that (4.2) and
(4.5) are the sound-soft and sound-hard equations for the ‘spherical’ null ficld method when
uy, 4y and uy are specialized to the spherical polar coordinates , @ and ¢. Table 2 lists, for the
spherical null field method, the forms assumed by the wavefunctions and the normalization
constants ¢; ;. Corresponding forms, appropriate to spheroidal and ellipsoidal coordinates, are
given by Morse & Feshbach (1953, Chs 5, 10, 11), Meixner & Schifke (1954) and Flammer

(1957).
TABLE 2. QUANTITIES APPROPRIATE FOR THE SPHERICAL NULL FIELD METHOD

general null

field method spherical null field method
Uy, Uy Uy r,0,¢
Fir(ug, k) Ju(kr), spherical Bessel function of order {
ﬁf’l (1, k) I? (kr), spherical Hankel function of order /
Y 5, 1(tg gy k) Pj(cos0) exp (ijp), where P{(-) is an associated Legendre function
Gt (—ikf4m) 20+ 1) (=) (I+))!
I P(¢n ;P’¢’)

incident plane
wave

P'(&p¢)

Ficure 2. Cross-section of arbitrary cylindrical body and associated coordinate systems. The z-axis is
perpendicular to, and directed out of the paper.

(a) Cylindrical null field methods

When treating cylindrical bodies of arbitrary cross section it is appropriate to make use of the
notation introduced in table 1 and the cylindrical coordinates and wave functions discussed in
§ 2 (a). There are two cylindrical null field methods: the ‘circular’ for which #; and u, are the
cylindrical polar coordinates p and ¢, and ‘elliptic’ for which #; and u, are the elliptic cylinder
coordinates £ and #. Figure 2 depicts the cross section of an arbitrary cylindrical body. Cylindrical
polar coordinates are indicated explicitly, while elliptic cylinder coordinates are indicated
implicitly. Note that 2 is the separation of the foci of the elliptic cylinder coordinates. Table 3
lists the forms assumed by the wave functions and the normalization constants for the circular
and elliptic null field methods.

We find it convenient to write both the even and odd null field equations in the form

f F(O)K(C)dC =a, (me{0-> o)), (5.1)

7-2
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56 R.H. T.BATES AND D.J.N. WALL

where the forms of K;°(C) and K;,°(C) are listed in table 4, for the circular and elliptic null field
methods.

Reasoning similar to that presented in § 3 (¢) shows that, for points in @, , it is permissible to
write

Y= 3 (b0 k) ot B) + 0 03w F) T D], PeQeyy  (5.2)
m=0 .

where both the even and odd b,, can be expressed as

b, = f F(O)KH(C)AC (me{0 o). (5.3)

We list ¢&,, ¢%, K;:2(C) and K;;°(C) for the circular and elliptic null field methods in tables 3 and 4.

TABLE 3. WAVE FUNCTIONS APPROPRIATE FOR CYLINDRICAL NULL FIELD METHODS

null field .
method IX (g k) H®* (uy, k) VX (g, k) I
circular I (kp) H® (kp) cos (mg), x=e —il2,m>0
Bessel function of first Hankel function of second —i[4,m=0
kind of order m kind of order m sin (m@), X = o
elliptic RY,(kd, £) R, (kd, ) S (kdy ) -,
modified Mathieu modified Mathieu Mathieu function even
function of first kind, function of fourth kind, and odd, of order m
even and odd, of order m  even and odd, of order m
- v J
d = semi-focal distance of elliptic cylinder coordinate system. Refer to Morse & Feshbach (1953,
Ch. 11).

1
I = f St ) (1= s

x denotes either e (even) or o (odd).

TABLE 4. KERNEL FUNCTIONS APPROPRIATE FOR CYLINDRICAL NULL FIELD METHODS

(Refer to table 3 for definitions of notation.)

null field method K% (C)

. cos
circular (sound-soft) —H®(kp") sin (m¢’)

. sin , . sin ,
circular (sound-hard) 1k [Hr(ﬁl (kp") cos {(m+1) ¢’ = L3+ HP (ko) cos {(m—1)¢'+ §1}]
elliptic (sound-soft) —R® (kd, &) Sy (kd, ")
clliptic (sound-hard) (1/kd) (&2 —"2) B[~ 1)} cos (&~ &) Sn(kd,7') (A[dE) RD,, (k,E")

— (1=y)ksin (G- &) R, (kd, £) (d]dn") Sx(kd, )]

The formulas for K% (C) differ from those for K;*(C) only in that J,, replaces H® and RY,
replaces RY,.

The angles §; and §, are defined by
cos =—C & sin§1=—2;\(&xé’);
cosl, =n&; sing, = %- (¥ x 7).

6. NUMERICAL CONSIDERATIONS

The numerical solution of the null field equations can be accomplished by adapting standard
moment methods (cf. Harrington 1968). But there are several subtle points which are not
encountered with the conventional integral equations. They vary slightly for sound-soft and
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sound-hard bodies and for the several null field methods. But the important aspects are common
to all null field equations. In this section the detailed argument is confined to sound-soft bodies,
in order to simplify the symbolism as much as possible. We comment on sound-hard bodies
when they involve noticeably different considerations.

(a) General considerations

Define Kj; to be the factor multiplying fin the integrand of (4.2). Consider the functions,
¥, , say, which are biorthogonal to the Kj; over §, in the sense defined by Pogorzelski (1966,
Ch. VII, §4). The form of (4.2) is such that f;, where

! ~
3 4, %5 (6.1)

must converge to f; in a mean-square sense, as L —> c0. The Gram-Schmidt orthonormalization
procedure (cf. Morse & Feshbach, 1953, pp. 928-931; Pogorzelski 1966, Ch. IV, §1; Zabreyko
et al. 1975, Ch. 111, § 1) can also be invoked to derive (6.1). Waterman (1969, 1971) has examined
analytical and numerical aspects of this.

It is convenient to define )
o= [ [lr=Auleas (62

where the superbar can stand either for a tilde (as in the two previous paragraphs) or for a
circumflex accent (see the next paragraph). We also need to set a mean square tolerance, e, say,
which is acceptable for an approximate numerical evaluation of f. This tolerance has to be
gauged according to criteria determined by whatever physical situation is being investigated.

Numerical solutions to integral equations are usually protracted and they can be expensive.
Exceptin trivial cases where the ';f’] turn out to be directly proportional to the complex conjugates
of the Kj; (i.e. when u] is constant over §) the required number of computational operations is
proportional to L3 (cf. Harrington 1968). So, our main concern is with reducing Z, or, equiva-
lently, M (see § 6 (5) below), even at the expense of mathematical rigour. Infact, we havelearntto
avoid approximating f by r.h.s. (6.1), although its ultimate convergence is established, because
we know by example that r.h.s. (6.1) can be computationally awkward (Bates & Wong 1974;
Bates 1975 5). Our computational experience persuades us that there usually exist functions, f’j, !
say, independent over S but not biorthogonal to the Kj;, and expansion coefficients, «;; say,
such that f,, where

L 1
i= 5 3 a4, (6.3

converges more rapidly to f than does f;. By this we mean that the least value of L, for which
¢y, < e, is significantly less than the least value of L for which é&;, < e,.

As Jones (1974b) has emphasized, there do not seem to exist any methods for estimating
a priori how large L must be to ensure that €, < ¢,. The best that can be done is to choose a
particular L, say L', and then compute €z, &, &1,,9, €tc., and continue until numerical con-
vergence is (apparently) manifest.

Experience shows that the value of Z, for which é;, < ¢,, is usually least when the YA/j, ; accord
with the required physical behaviour of f (cf. Bates 19755). When § is an analytic surface, the
YA’]-’, should be analytic also. If there are points and/or lines on §, at or on which § ceases to be
analytic, the !IA’,-,, should exhibit the appropriate singular behaviour in neighbourhoods of the
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58 R.H.T.BATES AND D.J.N. WALL

non-analytic parts of § (namely the edge conditions, which must be satisfied by electromagnetic
fields (Jones 1964, §9.2)). Even when S is analytic, it is not ideal to represent f by basis functions
whose mean effect is the same everywhere —i.e. functions such as exp (i[y, 7, +757s]), where y,
and vy, are real constants. There does not appear to be any way of handling this explicitly, for a
scattering body of arbitrary shape. But there does exist a suitable method for a cylindrical
scattering body, for which the surface § reduces to the boundary curve C, and the three-
dimensional space 1 reduces to the two-dimensional space 2 (refer to table 1). We discuss this in
detail in § 6 () below, which is devoted to cylindrical scattering bodies: these have been studied
in greater computational depth than bodies of arbitrary shape because they involve much less
computational effort and expense.

(b) Considerations for cylindrical bodies

In practice we can only solve a finite simultaneous number, 2M +1 say, of the null field
equations (5.1). If we restrict the integer m to the set {0 - A/} then we cannot usefully employ
more than 24/ + 1 independent basis functions in a representation of F(C). Note that whenm = 0
the odd basis function necessarily vanishes, which is why we have 2M+1 and not 2M + 2
independent functions. By analogy with (6.3) we write

M

Fyy = F(C) = 7(C) 3, [ah Pa(C) +a PR(C)), (6.4)

where the «,, are expansion coefficients, the ¥, are appropriate basis functions and the super-

scripts e and o denote ‘even’ and ‘odd’, as in §§ 2 () and 5 (a). We include a weighting function

o = o(C) for later convenience. There is no need to repeat or amplify any of the discussion
relating to_f;, and fL ,50 we do not need to affix a tilde or circumflex accent to Fy, or ¥,,.

In the neighbourhood of any point on C where C ceases to be analytic, F = F(C) can be

expressed in the form F = vew, (6.5)

where « is analytic and v is either integrably infinite or is singular in its nth order, and higher,
derivatives (the value of n characterizes the type of singularity of F). Some, at least, of the ¥,
should exhibit the same singular behaviour in the neighbourhood of the singular point on C. The
computational advantage of using such singular functions has been demonstrated by Hunter &
Bates (1972) and Hunter (1972, 1974) who deal with several singularities (simultaneously present
on the surfaces of cylindrical bodies) by dividing the surfaces of the bodies into contiguous
sections, on each of which F'is approximated by a series of the form of (6.4).

Variations in curvature of C affect the mutual interaction between the surface sources existing
in C, thereby causing concentrations and dilutions of F(C) which increase the error sensitivity of
numerical solutions to the null field equations. Since a circle exhibits no changes of curvature, the
possibility of transforming C into a circle is worth investigating. Consider the conformal trans-
formation of £, on to the exterior of a unit circle, an arbitrary point on which is identified by the
angle &, The element of arcdC and the differential angular increment around the circle are

related by dC = hd®, (6.6)

where / is the metric coefficient characterizing the ‘geometric irregularity’ of C. If C'is analytic
then so is %, but the latter exhibits integrable singularities at values of 9 corresponding to any
points where C ceases to be analytic. Table 5 lists the metric coefficients which we use in various
computational examples presented in this series of papers. Bickley (1929, 1934) gives larger lists,
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based on the exterior form of the Schwarz—Christoffel transformation (cf. Morse & Feshbach
1953, §4.7). General shapes can be transformed using formulas given by Kantorovich & Krylov

(1958, Ch. 5).
Shafai (1970) shows that, if / is considered as a function of C rather than of 9, it satisfies
h=1[v (6.7)

at each singularity (if there is one or more) of C, for sound-soft bodies. This suggests that the
factor ¢ introduced in (6.4) should be written as

o = 1/h (6.8)

because, when (6.4) and (6.6) are substituted into (5.1), in the sound-soft body case, the metric
coefficient % cancels out.

TABLE 5. METRIC COEFFICIENT /(7)) OBTAINED BY TRANSFORMATION OF THE REGION {2, FOR A
SQUARE, RECTANGLE, EQUILATERAL TRIANGLE AND ELLIPSE ON TO THE EXTERIOR OF THE
UNIT CIRCLE

cross-sectional

shape h(9) transformation constants
square afcos (20} |E E = 0.847
a = half length of a side
rectangle a(m—sin? ﬁ)%/E a = half length of longest side

b = half length of shortest side
For bfa = 0.1, m = 0.1055, E = 0.840
Refer to Bickley (1934) for other

bla ratios
equilateral afcos (39))}|E E=1.186
triangle a = half length of a side
ellipse (a®sin®® + b cos? 9)® a = semi-major axis

b = semi-minor axis

For sound-hard bodies no convenient cancellation of the metric coefficient is possible because
there is no simple formula such as (6.7) connecting £ and v. However, F is always finite at
singularities of C. It is usually most convenient to set 0 = 1in (6.4) and use ¥,, which are regular
everywhere on C, but it is advisable to make the substitution (6.6) in the null field equations so
that the factor 4 can compensate, at least partially, for variations in the curvature of C; this is
what we do for the applications presented in § 8. However, it is worth remembering that numerical
instabilities can occur in the neighbourhoods of singularities of C, so that it is sometimes preferable
to forgo the substitution (6.6) and instead use the ¥,, which exhibit the appropriate singular
behaviour. There is no precise algorithm for deciding a priori which is the more profitable
procedure.

In conventional integral equation formulations of scattering problems, the kernels are usually
singular, and it is often inconvenient to use other than the simplest basis functions — pulse-like
functions, or even delta functions—so that one solves the integral equations by the method of
subsections (Harrington 1968). The matrix orders required to determine F to within a desired
tolerance are found to be much larger than for the null field methods.
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(¢) Specific computational considerations

All the computational results which we present in § 8 are for cylindrical scattering bodies.
Substituting (6.4) into both the even and odd forms of (5.1) gives (using X to denote either

e or o) i

3 [0+ g O] = —ah (me (0> M), (6.9)
qg=

where the four @ are defined by
Gy =f o(C) ¥y (C) K, (C)dC. (6.10)
c

When we use the transformation (6.6), we always take the ¥,(C) to be
Ye(C) =cos (¢9) and WY(C) = sin (¢9). (6.11)

The @, , are the elements of the matrix that must be inverted to obtain the «,, from the a,,. We
define the norm (denoted by Z) of this matrix to be the determinant of the Z,, , where

M 3
Zpq=Ppq (WEO |(pm,ql2) . (6.12)
We have previously found this norm to be useful (Bates & Wong 1974) and Conte (1965, Ch. 5)
shows that it is a good measure for comparing the relative condition of different matrices. We
tabulate the order of Z, i.e. O(Z).The smaller Zis, the greater is the error in the computed inverse
matrix, for a given round-off error in individual arithmetic operations.

The computer time needed to perform a calculation is perhaps the most important factor which
must be taken into account when attempting to assess a particular numerical technique. Unfortu-
nately, there are such great differences between the many existing computing systems that bare
statements of central processing unit (c.p.u.) times are not too meaningful. However, we feel that
it should become accepted practice to record c.p.u. times, if only to give an ‘order-of-magnitude’
idea of the amount of computation involved. We list pertinent c.p.u. times in the captions to
several of our tables and figures. For our computations we used the Boroughs B6718 digital com-
puter (48-bit word) at the Computer Centre of the University of Canterbury. We used the
extended Simpson rule (Abramowitz & Stegun 1968, formula 25.4.6) for all numerical evalua-
tion of integrals. As our integrands are oscillatory there seems to be little point in attempting to
use higher quadrature formulae (cf. Ng & Bates 1972). We used Blanch’s (1964, 1966) rapid and
accurate algorithms for computing Bessel and Mathieu functions.

As we point out in § 6 (a) there is no alternative at present to the brute-force procedure for
checking whether numerical convergence is occurring. For a particular A we note the values of C
(denoted by C,, C, and C, respectively) for which | £, (C)|, | F§# (C)| and | F§2(C)| are largest, where

FiP(C) = Fyn(C) = Fy(C)  (ne{1,2}). (6.13)
We say (arbitrarily) that the computation of F(C) has converged (numerically) when

|FSP(C) [ Fyr(Co)| < 0.03 (6.14)

for n equal to both 1 and 2.
We take the incident field ¢, to be a plane wave incident at the angle ¢. The appropriate
expansion coefficients a,, for the series r.h.s. (2.14) are listed in table 6. All the bodies that we
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examine are symmetric about ¢ = 0, which means that the even—odd and odd-even matrix
elements, introduced in (6.9) and (6.10), are automatically zero:

Doom = Dgom =0 (g, me{0 > M}). (6.15)

This significantly reduces the amount of computation required to obtain values of fand ¢ to a
particular, desired accuracy. In fact, it reduces from 2M + 1 to M + 1 the order of the matrix that
must be inverted.

TABLE 6. COEFFICIENTS IN PLANE WAVE EXPANSIONS FOR
CYLINDRICAL NULL FIELD METHODS
(Refer to table 3 for definitions of elliptic cylinder (Mathieu) functions.)

null field method a® a®

m m
circular 4im+1 cos (m) 4im+lsin (mg)
elliptic A/81m 1S (kd, cos P) A/8im+1S, (kd, cos @)

~

~———T

FIGuRE 3. A pair of separated scattering bodies.

7. NULL FIELD TREATMENT OF MULTIPLE SCATTERING BODIES

Figure 3 shows a pair of totally reflecting bodies embedded in the space ¥. The surfaces of both
bodies are closed. In keeping with the notation introduced in § 2, we partition ¥ according to

Y’V Y_IUSIUY-FI; Y‘N Y—2US2UT+2’ (7.1)

where §; is the surface of the first body and 7_, and ¥, are, respectively, the parts of space inside
and outside ;. The point O, = ¥_, is taken as origin for an orthogonal curvilinear coordinate
system (uyy, Uy, Us,). The surfaces Z_, and X, on each of which the radial-type coordinate u;,
is constant, respectively inscribe and circumscribe S, in the sense that they are tangent to it but
do not cut it. We define

Y punn ~ region inside 2'_;; (7.2)

Y, ., ~ region outside 2. (7.3)

8 Vol. 287. A.
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The notation for the second body is similar. We define
Yip~Yian ¥, (7.4)

A monochromatic field ¥, originating from sources existing entirely within ¥, ,, impinges
upon the bodies inducing equivalent sources in their surfaces. Referring to (2.5) and employing
an obvious extension of notation, we see that we can write the scattered field ¢ as

U=+, Pel nl.,; (7.5)

o = A{f&fflgds} (7.6)

where f; is the density of equivalent surface sources induced in S,; £, is written similarly. We find
it convenient to introduce the terminology: ‘the exterior and interior multipole expansions of ,’
by which we mean the expansions, valid for Pe ¥, , and Pe ¥}y ) respectively, of r.h.s. (7.6)
got by expanding g as in (2.10).

The first essential step in our approach is, by analogy with § 3, to replace the material bodies
by ‘disembodied’ distributions of surface sources, identical in position and in complex amplitude
with f; and f,. Then ¢ can be written as

Y =vY1+9, Pel, (7.7)
with ¢, given by (7.6), and ¥, expressed similarly. We then apply the optical extinction theorem
to the two bodies separately:

Y=-v, Pel_y (7.8)

Y=—v, Pel_y (7.9)

which lead to simultaneous sets of extended integral equations, by analogy with (3.2), for f; and f,.

Since the bodies are separated, '_; N 1_, is necessarily empty. However, in certain cases X_;
intersects X', andfor 2_, intersects 2,;. We define 2, to be the largest closed surface, on which
u,; 1s constant, contalned within ¥, null (@ 2 and not intersecting X ,. We define ¥, to be the
region of space inside 2_1 We see that 7’ pan@ ~ Ynun@ when 2, does not intersect X_;. We
define 7, nulie) Similarly.

We obtain null field equations, analogous to (4.2) and (4.5), in the following way. By analogy
with § 4 we satisfy (7.8) explicitly for Pe 1} y;;¢); the analytic continuation arguments quoted in
§4 then ensure that (7.8) is satisfied throughout 7"_,, provided that 7 aun( 1 not infinitesimal.
In the latter case the null field method can still be applied if the exterior multipole expansion of
¥, converges within a finite part of 13,,;, ) containing O,. This is the same as requiring that the
singularities of the exterior multipole expansion of {r, lie within a surface, on which u,, is constant
and is less than the value u,, has at O, (refer to Bates’s 1975 & discussion of the Rayleigh hypothesis
and related matters). We expand g in multipoles and proceed exactly as in §4 to develop the
interior multipole expansion of ¥r;. We re-express ¥, as a function of the coordinates u,y, #y;, g,
instead of the coordinates u,,, %y, U3y, Using the appropriate addition theorem (Zaviska 1913;
Stein 1961; Saermark 1959; Sack 1964; Cruzan1962; King & Van Buren 1973). We then find that
¥, can be expanded, within 7 aunl@@, 10 the same sort of interior multipole expansion as ;.
after handling (7.9) similarly, we have sufficient null field equations to give ¥, and ¥, uniquely -
we develop the formalism in § 7 (a) below.

When we have N bodies (N > 2) we use the subscripts p and ¢, attached to the same symbols
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as we have employed above, to identify quantities associated with individual bodies. We again
constrain the sources of ¥, to lie within ¥ ++> Which we now define by

A

V., = tgl Vi (7.10)

We satisfy the extinction theorem separately within each body. For the pth body we satisfy
the theorem explicitly within ¥y € Yaung) where 7 null(p) is the part of space inside the
closed surface Z'_p, which is yet to be defined. We define 2 +t» t€{1 = N}, to be the smallest closed
surface on which uy; is constant and which encloses all the singularities of the exterior multipole
expansion of . If any of the E+t, t # p, enclose O, for any pe {1 - N7}, then the method intro-
duced in this paper fails. When none of the Z+t enclose O,, we define by 2, p to be that member of
{Z’+t, te{t > p—13U{p+1—> N}} which approaches closest to 0O,.If Z+p does not intersect 2_,

then we may say that Z' ~2 . If 2 » does intersect X', then we define z » to be that surface

on which #,,, is constant and Wthh is tangent to 2+p but docs not cut it.

Ficure 4. The pth scattering body.

It is worth realizing that in the majority of situations of interest none of the X',; will intersect
each other, let alone enclose any of the O,,. Since Z:'H cannot enclose 2, ;, because the latter must
enclose all the singularities of the exterior expansion of i, (cf. Bates 1975 ) it follows that usually
f_p ~ 2_, for all pe{l - N}. However, we include the previous paragraph for completeness.

We expand y,, within 2}y, in its interior multipole expansion. We expand all other ¥
within 7 ull( i 2 similar multipole expansion by applying the appropriate addition theorems
to their exterior multiple expansions. Repeating this procedure for all pe{l -~ N} we obtain
sufficient null field equations to give all members of { f;; t€ {1 - N}} uniquely.

(@) Null field formalism for multiple bodies

Figure 4 shows the pth of a number of separated, interacting scattering bodies. We now give
precise symbolic expression to the argument developed above. Our notation is an obvious
extension of that introduced in § 2; but note the superscripts + and — affixed to the symbol & to
identify exterior and interior multipole expansions respectively.

The j, /th term of the interior multipole expansion of ¥, is

63,1071, J3,1(tt1ps £) Tya(ttaps s ), (7.11)

where by = fs f Fo(Tag Tan) Kt (T1ps Tap) . (7.12)
8-2
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64 R.H.T.BATES AND D.J.N. WALL
The j, lth term of the exterior multipole expansion of ¥ is
CUARH [CHROR AT (7.13)
where ¢ # p and b= fs fﬂ(TIt, 7o) Kif1(71e Tor) ds. (7.14)
1
Use of the appropriate addition theorem (see references quoted in §2) allows (7.13) to be
rewritten as S ~
Cj,zb}tz,tl,;o _Zil At p, 3.0 S, v (Uaps K) Yy p (g, gy, ) (7.15)
within 7. null(p) Where
At p, 500 = 203 _E l,“, PR IRRY l”hj” v (Uyeps K) Y"l"(uztp’ Ustps ), (7.16)

where the a; ; ;»; ;- depend upon the particular addition theorem being invoked and (uy;,, s,
ug;,,) are the coordinates of O, in the ¢th coordinate system.

We choose an arbitrary point O within ¥ as origin for a further system of coordinates identified
by ¢ = 0. We use (2.11) to represent the incident field ¥, but with #,, u, and u, replaced by
#10, Usg and ug, respectively. The aforementioned addition theorems allow ¥, to be represented
similarly within ¥ null(p)» but in terms of wave functions depending upon u,,,, #,, and uz,. We add
a further subscript p to the g, to identify the latter representation. We find that

{ = 14
Gy = o BB ¢, 08,0, p. 13,00 (7.17)

V=0j'=

We note that {¥, ;(uy, s, £); 1e{0 - oo}, je{—1 1} is a set of functions orthogonal on any
surface which is contalned w1th1n ¥ null ( and on which #,,, is constant. The extinction theorem,
applied to the fields within 7, null(p) then ensures that

b;:l » +—_;¢Z(§p)120 2 l'b;:,l',tAt,p,j',j,l’,l = —-au,p (lE{O — 00),j€{—l — l}), (7.18)
.1 J'=

where the superscript () on the summation sign indicates that the term for £ = p is missing. There
is a set of equations (7.18) for all pe {1 - N}.

(b) Circular null field method for two bodies

The formulae needed for the applications presented in § 8 (¢) are listed here. We restrict our-
selves to a pair of bodies and we use only the circular null field method (figure 5).

If Z,(-) denotes any Bessel function of order m, the addition theorem (cf. Watson 1966,
Ch. 11) gives

2o (kp)se () = 2= 3 euldiip.mnse (18,) + Bipmnsc (18,)) olkp,)  (me(0 > co)

(7.19)
provided that p, < p;,, where ¢,pe{1,2} and p # t and
At)fp,m,n = (— 1)m—nA;’<’t m,n
= $en[ Znn(kpep) cos{(m—n) Py} + (— 1) Zpp 0 (kpep) cOs{(m + 1) Pip}] (7.20)

and
B p,mn = (=1)™" By t,m,n

= %6‘ [+ m—n(kptp) sin ((m_n) ¢tp) + ( - l)n gm+n(kptp) sin {(m +n) ¢tp}], (7'21)
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where the Neumann factor ¢, is 1 for » = 0 and 2 for n > 0; and where sc () denotes cos (+) and
the upper sign in + is taken when x denotes e, but sc () denotes sin (-) and the lower signin +
is taken when x denotes o. In (7.19) the bar surmounting x denotes that X is o when x ise,
and vice versa. This notation is used throughout the remainder of this section.

P

Ficure 5. Cross-sectional geometry of scatterers.

We present formulae suitable for digital computation. Instead of referring the multipole
expansion of the incident field to an arbitrary point O € as origin, in conformity with the
general treatment presented in § 6 (@) above, we start with ¢, referred to O, as origin:

My )
Vo= (=1/4) X enlan,1cos (my) +as, 1sin (mpy)] ko), (7.22)
n=
where the @, , are given. The addition theorem (7.19) then shows that the expansion coefficients
of the representation for ¥, referred to O, as origin are
M, -
a7>r<z,2 = 20 [a:v,(,lAlfz,m,n +a;<¢,lle,2,n,m] (me{O -> M2})9 (7'23)
n=
where £ is replaced by J in r.h.s. (7.20) and r.h.s. (7.21), which means that the constraint
P2 < p1s no longer applies (cf. Watson 1966, § 11.3). In general, M, and M, need to be different if
the surface source densities on both bodies are to be computed to the same accuracy.

In conformity with the notation introduced earlier we write the expansion coefficients of the
interior and exterior multipole expansions of ¥, t€ {1 - 2}, as b,, ; and b}, ; respectively. So, on
invoking the notations introduced in table 1 and § 5 (4), we can write (using £ to denote either

tor ) bEX, = JC F,(C)K£X(C)dC, te{l > 2} (7.24)

A
We then find on applying the extinction theorem within ¥}, p € {1 - 2}, that the equations
equivalent to (7.18) are

Mtp -
bmp + Eo [Agfp,n,mbz,f + Bgfp,n,mb:zr,ﬂ =—apn, (pte{l,2};p#1), (7.25)
n=
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where Z'is replaced by H®in (7.20) and (7.21). The values of M;, and M,; depend upon M, M,
and the accuracy to which F;(C) and F,(C) are required. We write F,(C) as

F(C) = 04(C) X, 85, P24(C) +aka ¥o(0)]  (te(1,2)), (7.2

where the 0,(C) are equivalent to the weighting function ¢(C) introduced in (6.4). The forms of
the ¥, ,(C) are chosen according to the same criteria as are discussed in §6 (5). Substituting
(7.26) into (7.24) permits (7.25) to be written as

M,
qgo [of,¢ Pt 5na + 02, ¢ Pi 5w g) + E (25, 4Gy m e +29,¢Gormal = —an e (pyte{l > 2} p# 1),

(7.27)
where there are four different G, ,, ,

’ Mpt =
Goina= %[5 enm®qiat B o unPsial (prte{l,2;p# tme{0 > M qe{0 > M),
n=

(7.28)
where & is replaced by H® in (7.20) and (7.21). There are eight different @, ,,

Dy = fo +(C) Wio(C) KX (C)dC  (p,teft, 25 p # t; me{0 > My}; g {0 > My}).  (7.29)
t

Inspection of (7.28) shows that the G, ,, , are got by truncating summations to M,,; terms. But
it is clear from (7.27) that the accuracy with which each F,(C) is computed depends upon the
relative values of M, and M,,;. Thisis a manifestation of what is known as the ‘relative convergence
problem’ (Mittra, Itoh & Li 1972). We discuss it further in § 8(¢), in so far as it bears on the
particular computational examples we have chosen to present: it seems that, at present, each
new relative convergence problem has to be treated as a special case.

We find it convenient to denote by 4, ., the matrix with elements 4, ., where « through »
are integer indices. It then follows that (7.20) and (7.21) can be re-expressed as

Agfp,m,n = COS (m¢tp) H;:L,n cos (n¢tp) +Sin (m¢tp) H?%L, n Sin (”¢tp)’ <7°3O)
B . mn = *sin (m¢y,) Hy , cos (nd,,) T cos (mpy,) Hy, , sin (ng,,,), (7.31)

where the cos (+) and sin (-) matrices are defined to be diagonal, and the elements of the
matrices H,; , are Howarth & Pavlasek’s (1973) ‘separation functions’:

Hyj o = e, [H u(kpey) £ HZlw (kpey)]. (7.32)

Reference to (7.29) and to § 6 (a) above shows that ®; 1%, is the matrix which has to be inverted
to compute the scattering from the ¢th body when it is isolated, i.e. when the other body is
removed. We find it convenient first to evaluate the ®; ,;;/, for f equal to 1 and 2, and then to

evaluate the G, ,, , for p equal to 1 and 2. The latter are given by

’

G;,;(n, = Ap t,m, nQp,n q + Bx RA n,méz-,n,q (7-33)
as (7.27) shows.

A significant computational advantage of our method of ordering the matrix manipulations
is that the ®£%>, need only be pre-multiplied by rotation matrices if the ¢th body is rotated
about Oy.
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8. APPLICATIONS

The results of a number of numerical solutions to particular direct scattering problems are
presented now, in order to demonstrate the computational usefulness of our null field methods.
We represent F(C) in terms of the basis functions (6.11) and we employ the substitution (6.6) in
(6.10). The factor o(C) in (6.4) is given by (6.8) for sound-soft bodies and is set equal to unity for
sound-hard bodies. We restrict the direction (identified by the angle ¢), of the incident wave to
either 0 or n, because we find that by so doing we can illustrate all the points we wish to make.

o

Ficure 6. Cylindrical scattering bodies: (a) equilateral triangular body; () rectangular body
with corners of variable curvature; (¢) elliptical body.

This also means that the symmetry existing in all our examples permits us to display the complete
behaviour of F(C) by plotting it on only half of C, denoting by C the value of C at the point on
C where ¢’ = ¢ (there is only one such point on each of the bodies we investigate here —refer to
figure 6). For convenience, we normalize F(C) such that

F(C-C) = 1. (8.1)

As far as cylindrical bodies are concerned, acoustic diffraction by bodies impenetrable to
sound is exactly equivalent to electromagnetic diffraction by perfectly conducting bodies. There
is equivalence between sound-soft bodies and electrically polarized fields, and between sound-
hard bodies and magnetically polarized fields (cf. Bates 19754). This allows us to compare our
results with experimental and computational studies of electromagnetic scattering.

Figure 6 shows the cross-sections of the types of scattering bodies we present results for. We
recognize that the forward scattering theorem (cf. Bowman, Senior & Uslenghi 1969, § 1.2.5) is a
powerful check on any scattering computation. We use the accuracy to which this theorem is
satisfied as an ‘energy test’ and we introduce the quantity E defined by

E = error in energy test. (8.2)

We consider that a computation has ‘failed’ if £ > 103,
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L O N L)
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normalized |F(C)|
-

TT1T 11T P T 17
TIT 1T TT

ol by 1y 1)

A d
t 1 [, ESTSt IO { { | I |
0 1 2 3 0 1 2
Cla Cla
Ficure 7. Surface source density on a sound- Ficure 8. Surface source density on a sound-
soft triangular cylinder (figure 6 (a)). ...... , hard triangular cylinder (figure 6 (a)). ...... ,
ka =5.0; ——, ka =1.0; A, measured by ka = 5.0; , ka=1.1; A, calculated by

Iizuka & Yen (1967) (ka = 1.0). Hunter (1972) (ka = 5.0).

normalized |F(C)|

Ficure 9. Surface source density on a sound- Ficurk 10. Surface source density on a sound-
soft square cylinder (bfa = 1.0, ¢ = 0 in figure hard square cylinder (bfa=1.0, ¢=0 in
6(b)). «uenen , ka=5.0; ———, ka = 1.0; ——, figure 6 (5)). ...... , ka=5.0; ~——, ka = 1.0;
ka =0.1; A, measured by Iizuka & Yen , ka=0.1; A, measured by Ilizuka &

(1967%) (ka = 1.0). Yen (1967) (ka = 1.0).

TABLE 7. VALUES OF M AND C.P.U. TIMES REQUIRED FOR THE CONVERGENT
|FF(C)| SHOWN IN FIGURES 7 THROUGH 10, Z = O(1) IN EACH CASE

square cross-section

triangular cross-section bla=1.0, t=0in figure 4(b)
A A
s A} r R
sound-soft sound-hard sound-soft sound-hard
f_'_“—k_—\ f_"_.k_\ r - i) g ot A

ka ... 1.0 5.0 1.0 5.0 0.1 1.0 5.0 0.1 1.0 5.0
M 8 15 8 15 5 10 14 5 10 14
c.p.u. timefs 7 9 7 15 6 7 11 6 7 15
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(a) Circular null field method for single scatterers

Figures 7 through 10 show |F(C)| for some triangular and square bodies. We take ¢ = 0. For
comparison we reproduce experimental results of Iizuka & Yen (1967) and computational results
of Hunter (1972). The computational efficiency of combining Shafai’s (19770) transformation with
the circular null field method is dramatically emphasized by the low values for M and the large

value for Z quoted in table 7.

To illustrate how the circular null field method becomes ill-conditioned as the aspect ratio of
the body increases, we show in table 8 how O(Z) and O(E) vary with the elongation of an

elliptical sound-soft body.

TaBLE 8. CIRCULAR NULL FIELD METHOD APPLIED TO SOUND-SOFT
ELLIPTICAL BODY (FIGURE 6 (c))
(M = 14, ka = 3.14.)

bla 1.0 0.8
0(2) 100 101
O(E) 10~ 10~

normalized |F(C)|
oy
(=]

&
(%1

0 0.5 10 1.2 17 2.2
Cla

Ficure 11. Surface source density on a sound-
soft rectangular cylinder (b/a = 0.1, = 0 in
figure 6 (b)). , ka = 3.14, M = 14, c.p.u.

time = 22s; ———. ka = 1.0, M = 10, c.p.u.
time = 20s; ...... , ka=0.1, M =4, cp.u.
time = 15s.

0.6 0.4 0.2
10— 10-8 10-12
10-¢ 10-3 fail

0 0.5 1.0 15 20

Cla

Ficure 12. Surface source density on a sound-

hard rectangular cylinder (6fa = 0.1, t = a in
figure 6 (6)). , ka = 3.14, M = 10, c.p.u.
time = 62s; ———, ke = 1.0, M =6, c.p.u.
time = 32s; ...... , ka=0.1, M =4, cp.u.
time = 20s.

(b) Elliptic null field method for single scatterers

Figures 11 and 12 show |F(C)| for an elongated rectangular body with rounded corners. We
take ¢ = n/2. To obtain these results the semi-focal distance d of the elliptic cylinder coordinates

is taken as d, where

d = {1—(bja)%}a, (8.3)

Vol. 287. A.
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which makes 2, ,,, as large a part of £2_ as possible. If d/dv is reduced to zero, the elliptic null field
method becomes the circular null field method and the part of 2_ spanned by 2, is decreased.
Accuracy of numerical integration is crucial for the success of null field methods. We denote by
L, the factor by which the number of ordinates, used when the extended Simpson rule is employed
to evaluate (6.10), has to be increased, in order to obtain solutions from (6.9) for the a, to the
required accuracy, when the semi-focal distance of the elliptic cylinder coordinates is changed
from d to some other value. Table 9 shows the marked increase and decrease of Z and Ly,
respectively, as d is increased from zero to d, for a sound-soft rectangular cylinder.

TaBLE 9. ELLIPTIC NULL FIELD METHOD APPLIED TO SOUND-SOFT RECTANGULAR
CYLINDER (SEE FIGURE 6 (0): bj/a = 0.1, ¢ = 0)

dd ... 0 0.25 0.5 0.75 1.0
ka = 1.0, M = 10
r A Al
0(2) 10-10 104 10-4 10-2 100
L, >8 8 4 2 1
ka = 3.14, M = 14
~ A Al
0(2) 10-20 1011 10~ 10-5, 10-*
L, >4 >4 >4 4 1
a
DI

(a)

]
|
I
| |
| i
| !
®) 10, x 1o, Xy
| |
| o
| ST
(5) iol xl :02 Xy
| «a | D _L a

Ficure 13. Pairs of cylindrical scattering bodies: (a) two identical elliptic cylinders;
(b) two identical square cylinders; (¢) an elliptic cylinder and a square cylinder.

(¢) Circular null field method for pairs of bodies

We take ¥, to be a plane wave incident at an angle corresponding to ¢; = ¢. We denote by
C, the value of C; at the point where ¢; = ¢. There is only one such point on each of the bodies
examined here (refer to figure 13).
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Our purpose is to demonstrate the computational convenience of our method, and we simplify
the examples as much as is consistent with this. We make both bodies about the same size, so that

we can take
M =M,=M; M,=M, =N, (8.4)

where the integers M and N are introduced for convenience.
Figure 13 shows the three pairs of bodies we investigate. Their symmetry ensures that

DL, = DI, = 0; (8.5)

& =P , =0 for (m+q) odd; (8.6)
A p,mn = Hy n} (8.7)

B, ymn =0, (8.8)

which have the effect of significantly reducing the required computational effort. The coefficients
of the multipole expansions of ¥, are then

a1 = 4MFLsc (mo); (8.9)
2 = 4™ exp (ikpa cos (h12 — ) sc (me)). (8.10)

TABLE 10. NUMERICAL CONVERGENCE OF THE FIRST SIX &f , AND Q§ , FOR THE PAIR OF SOUND-HARD
ELLIPTICAL CYLINDERS SHOWN IN FIGURE 13(a) wITH bfa = 0.76, ka = 1.54, kD = 4.0,
@ =0 (hence @ , = 0; te{l >2}), N = 23

(In each entry in the table, the real part of @, , is above the imaginary part of a; ,.)

q M=4 M=6 M=38 M =10
A g 0 —0.097966 —0.097733 —0.097749 —0.097749
—0.037092 —0.037752 —0.037772 —0.037772
1 —0.132527 —0.130935 —0.130979 —0.130981
—0.175235 —0.175666 —0.175697 —0.175698
2 0.112851 0.106871 0.106819 0.106810
—0.056340 —0.056320 —0.056476 —0.056485
3 —0.006684 —0.006905 —0.006946 —0.006949
0.030580 0.028691 0.028624 0.028618
4 — —0.011436 —0.011489 —0.011513
—_ —0.003294 —0.003658 —0.003689
5 — —0.000700 —0.000805 —0.000817
— —0.002774 —0.002905 —0.002921
A5 q 0 —0.044558 —0.044673 —0.044679 —0.044699
0.103017 0.103800 0.103780 0.103779
1 —0.092042 —0.090970 —0.090919 —0.090914
0.195611 0.195603 0.195641 0.195643
2 —0.158362 —0.152364 —0.152362 —0.152383
—0.167660 —0.165631 —0.165746 —0.165752
3 0.024354 0.023350 0.023336 0.023336
—0.020391 —0.019466 —0.019436 —0.019432
4 — 0.010720 0.010766 0.010777
— 0.006534 0.006334 0.006326
5 — —0.001900 —0.001946 —0.001951
— 0.001172 0.001194 0.001199
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TaBLE 11. NUMERICAL CONVERGENCE OF THE FIRST SEVEN 0f ., & , FOR THE PAIR OF SOUND-SOFT
SQUARE CYLINDERS SHOWN IN FIGURE 13(b), wiTH ka = 3.14, kD = 10.0, ¢ = 4n (hence
Qg = U ,), M =13

(In each entry in the table, the real part of «; , is above the imaginary part of &, ,. The relative convergence
test is satisfied when N = 30.)

of,q o3 q
~ A- hY r ate A}
o q N=12 N=15 N=35 N=12 N=15 N=35
7
~ —0.250245  —0.249979  —0.249982 — — —
p— 0.028165 0.028227 0.028229 — — —
§ >.‘ 1 0.506148 0.506562 0.506557 —0.920619 —0.920548 —0.92049
O ~ —0.140652 —0.140831 —0.140828 0.358002 0.358060 0.358061
Q{( =5 2 1.25160 1.25197 1.25197 —0.011035 —0.010970 —0.010970
= —0.070592 —0.070763 —0.070758 0.324950 0.324982 0.324984
E O 3 0.388148 0.388433 0.388434 0.401695 0.401757 0.401752
= 9) 0.005621 0.005526 0.005531 0.682449 0.682520 0.682521
4 0.309475 0.309167 0.309168 —0.228484 —0.228379 —0.228382
5' ‘2 —0.213278 —0.213499 —0.213497 0.308493 0.308160 0.308159
=© 5 0.143397 0.143382 0.143385 —0.035410 —0.035569 —0.035570
E; 0.114938 0.114824 0.114825 0.221693 0.221711 0.221713
2 25 6 0.142208 0.142189 0.142190 —0.103601  —0.103596  —0.103594
es —0.089844  —0.089845  —0.089843 0.001584 0.001563 0.001553
=
=<
£
TABLE 12. NUMERICAL CONVERGENCE OF THE FIRST SEVEN &, 0§ , FOR THE PAIR OF SOUND-SOFT
SQUARE CYLINDERS SHOWN IN FIGURE 13 (b), witH ka = 3.14, kD = 17.61, ¢ = }n (hence,
g =0gq), M = 13
(In each entry in the table, the real part of @, , is above the imaginary part of «, ,. The relative convergence
test is satisfied when N = 42.)
o % o q
r —A A} r A Al
q N=20 N=35 N =42 N =20 N =35 N = 42
0 —0.563418 —0.561913 —0.561905 — - —_
0.064934 0.068325 0.068494 — — —
1 —0.085861 —0.087844 —0.087960 —1.00278 —1.00179 —1.00178
4 —0.066684 —0.064534 —0.064478 0.109593 0.105853 0.105858
\/\//: » 2 0.743689 0.739456 0.739450 —0.113282 —0.111922 —0.111914
»—1 ~ —0.003804 —0.00392 —0.003981 —0.112723 —0.1156332 —0.115322
< 3 —0.008291 —0.014434 —0.014574 0.394478 0.391873 0.391866
>_( >'* 0.067807 0.066239 0.066106 0.153272 0.152979 0.152971
o =~ 4 0.016540 0.009097 0.008741 —0.067097 —0.080693 —0.080764
cd E —0.160202 —0.160763 —0.160885 —0.126332 —0.122468 —0.122532
SSN@P) 5 —0.073251 —0.066012 —0.065872 0.134041 0.137440 0.137432
I O 0.145867 0.145084 0.145141 0.044496 0.045850 0.045853
=w 6 0.009671 0.019729 0.019898 —0.067366 —0.057729 —0.057725
R —0.076490 —0.078301 —0.078249 —0.026791 —0.028713 —0.028694
<Z
=c
EE TABLE 13. ENERGY TEST FOR THE PAIR OF CYLINDERS TO WHICH TABLE 12 REFERS
w
2 <0 M 3 4 5 6 8 10
gZ E —0.51%x102 0.19x 102 —0.56 x 103 —0.28x 104 0.13x 105 0.27 x 10-6
T
o=



http://rsta.royalsocietypublishing.org/

A

\

0N

A
=
&

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
[ A\ \\
P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

NULL FIELD APPROACH TO SCALAR DIFFRACTION. I 73

We denote the value of |G, ,, .|, evaluated when N has a particular value, by |G ,, o v We denote
the value of ; ,, evaluated when M has a particular value, by «; ;. The elegant approach of
Mittra et al. (1972) to relative convergence is impracticable for us, but we find the following
‘relative convergence test’ effective. We require |a; 5| to differ by less than some desired
amount from both |0t p4_;| and |, o] while demanding that N is large enough to ensure
that each |Gy, .|y differs by less than one part in 107 from both |Gy, 4|n—1 and |Gy, ol v—2-
Tables 10 through 12 confirm that we obtain manifest numerical convergence by this procedure
when y = 3. We can increase our confidence in the results by applying the energy test. Table 13

(C,=0C))/a

Ficure 15. Surface source density on cylinder

Ficure 14. Surface source density on cylinder 1,
1, for two sound-hard elliptic cylinders

for two sound-soft elliptic cylinders (ka = 3.14,

bla = 0.8 in figure 13(a)). ———, kD = 6.28 (ka = 3.14, bla = 0.8 in figure 13 (a)). ...... s
(contact), M = 13, N = 25;——, kD = 12.57, kD =175, M =13, N = 25; ——, kD = 9.43,
M=13,N = 20;......, kD = 15.72, M = 13, M=13, N=22; ——— kD = 12.57, M = 13,
N = 15. N = 20.
I
3 — ]

IFl(Cl—él)l

(01_61)/“

Ficure 16. Surface source density on cylinder 1, for two sound-soft square cylinders (ka = 3.14 in figure 13 (b)).
L kD =17.61, M =13, N = 42; ——, kD = 10.0, M = 13, N = 30; ———, kD = 12.57, M = 13, N = 25.
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indicates the variation of E with M for the pair of cylinders to which table 10 refers. The energy
test is successful for A as small as 5, which might be thought remarkable when recalling the slow
convergence of some previously reported methods (quoted in §1).

Figures 14 through 18 display the magnitudes of the surface source densities, plotted against
C, — C,, for the three types of pairs of cylinders shown in figure 13, when 3 is incident at an angle
¢ = im. This means that the symmetry existing in our examples involving identical cylinders (cf.
figure 134, b) permits us to display the complete behaviour to /1 and F; by plotting F for just one
cylinder, as we do in figures 14 through 16. Multiple resonances of the kind discussed by Howarth
(1973) are clearly indicated. These resonances are due to the field reflected from one body onto
the other being in places more intense than the incident field.

3 [ T l T l T l T l T I T
S S
| |
S [ S)
= )
1 b—
0
(C,~C))a (0, =0y)]a
Ficure 17. Surface source density on cylinder Ficurre 18. Surface source density on cylinder
1, for two sound-soft cylinders: a square 2, for two sound-soft cylinders: a square
cylinder (cylinder 1) and an elliptic cylinder cylinder and an elliptic cylinder (cylinder 2)
(ka = 3.14, bja = 0.8 in figure 13 (c)). ...... , (ka = 3.14, bla = 0.8 in figure 13 (c)). ...... ,
kD =17.61, M =13, N = 42;—— kD = 11.5, kD =17.61, M =13, N = 42;— kD = 11.5,
M =13, N = 30; ———, kD = 15.72, M = 13, M =13, N=30; ——, kD = 15.72, M = 13,
N = 25. N = 25.

Reference to figure 13 (2) and () shows that the value of p; on r ¢ (refer to § 7 and figure 5)
for the square cylinders is greater than the value for the elliptic cylinders. This shows up in the
increased values of N for the square cylinder compared with the elliptic cylinder (see captions
to figures 15 and 16), required to satisfy the relative convergence test. Reference to figure 13 (4)
also shows that when the square cylinders are so close that D < 2.414 then I',; and I',, intersect
C, and C, respectively (refer to figure 3), which means that the sizes of 2, ;) and 2,11 are
reduced. Examination of tables 3 and 4 shows that the «; , are increasingly sensitive in their
higher significant figures to N as D decreases. As 2,1, and 2,,,1,(» are progressively reduced y
must be increased to maintain the same accuracy in the &, ,. There is no corresponding reduction
in the sizes of @,y and 2,112 when the elliptic cylinders of figure 13 (a) touch, so that y = 3
is sufficient to maintain the accuracy of the a; ;.

The c.p.u. time needed to compute the matrices @45, —for the elliptical and square cylinders
to which figures 14 through 18 apply —was 6s and 13s respectively (with A/ = 13 and N = 35).
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The additional c.p.u. time required to compute the surface source densities shown in figures 14
through 18 was close to 14s in each case. Only about 0.2s was needed to compute the matrices

At,p,m, n*

9. CONCLUSIONS

The results presented in § 8 (@), () support our contention that the elliptic null field method can
handle bodies of large aspect ratio. The essential thing is to choose the parameters of the elliptic
cylinder coordinates such that £, ,,, occupies as much of £_ as possible. When this is done the
numerical stability and accuracy of the solutions seem to be virtually independent of aspect
ratio, and yet the orders of the matrices which must be inverted are as small as those previously
reported in studies of bodies of small aspect ratio by the circular and spherical null field methods
(cf. Ng & Bates 1972; Bates & Wong 1974). We point out that our approach is a generalized
systematic procedure of the sort which Jones (1974 ), who examines the work of Schenck (1968)
and Ursell (1973), suggests should be derivable from the extended boundary condition.

A notable aspect of the null field approach to multiple scattering is that it permits multipole
expansions to be applied conveniently to bodies of arbitrary shape. The results presented in
§8(c) confirm that the scattering from interacting bodies having different shapes can be com-
puted to useful accuracy by inverting matrices whose orders are low, by comparison with what
has been reported before. Another significant aspect of these results is that they demonstrate that
the null field method permits near fields to be calculated expeditiously to useful accuracies.

A serious theoretical shortcoming of our method is that neither the uniqueness nor the con-
vergence of the numerical solutions has been rigorously demonstrated. But we have the following
strong theoretical reason for confidence in our procedures. The sources quoted in § 6 (a) show
rigorously that f7, as defined by (6.1), converges uniquely in a mean square sense to the solution f
of (4.2). All our computational experience suggests that the apparent numerical convergence to

of f;, as defined by (6.3) with the ?i’j,, possessing the characteristics set down in § 6 () (note also
the more extensive discussion of the ¥, in §6(4)), is much faster than the apparent numerical
convergence of f, to f. So we feel justified in hypothesizing that fr. converges uniquely to f; in a
mean square sense at least. But we offer as a challenge to numerical analysts this convergence and
uniqueness question, together with the more important problem of devising accurate a prior:
measures of the rate of convergence of numerical solutions to integral equations. The latter are
needed so that the accuracy of a solution for a single value of L, or M, can be usefully assessed
without having to make further (usually expensive) calculations for several slightly larger values
of L, or M.

The results reported here for totally reflecting bodies of arbitrary shape, together with Peterson
and Strém’s work on penetrable bodies of restricted shape, contribute towards making Water-
man’s approach globally efficient computationally.

We thank our colleague Dr A. W. MclInnes, also Professor W. M. Boerner of the University of
Manitoba, for several useful discussions. One of us, D. J. N. Wall, acknowledges the support of a
New Zealand University Grants Committee Postgraduate Scholarship.
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